Strict Ω-categories Are Monadic over Polygraphs

نویسنده

  • FRANÇOIS MÉTAYER
چکیده

We give a direct proof that the category of strict ω-categories is monadic over the category of polygraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The algebra of entanglement and the geometry of composition

String diagrams turn algebraic equations into topological moves. These moves have often-recurring shapes, involving the sliding of one diagram past another. In the past, this fact has mostly been considered in terms of its computational convenience; this thesis investigates its deeper reasons. In the first part of the thesis, we individuate, at its root, the dual nature of polygraphs — freely g...

متن کامل

On positive face structures and positive-to-one computads

We introduce the notion of a positive face structure. The positive face structures to positive-to-one computads are like simple graphs, c.f. [MZ], to free ω-categories over ω-graphs. In particular, they allow to give an explicit combinatorial description of positive-to-one computads. Using this description we show, among other things, that positive-to-one computads form a presheaf category with...

متن کامل

Hierarchies in Fragments of Monadic Strict NP

We expose a strict hierarchy within monotone monadic strict NP without inequalities (MMSNP), based on the number of second-order monadic quantifiers. We do this by studying a finer strict hierarchy within a class of forbidden patterns problems (FPP), based on the number of permitted colours. Through an adaptation of a preservation theorem of Feder and Vardi, we are able to prove that this stric...

متن کامل

Resolutions by Polygraphs

A notion of resolution for higher-dimensional categories is defined, by using polygraphs, and basic invariance theorems are proved.

متن کامل

Selection over classes of ordinals expanded by monadic predicates - Alexander Rabinovich and Amit Shomrat.dvi

A monadic formula ψ(Y) is a selector for a monadic formula φ(Y) in a structure M if ψ defines in M a unique subset P of the domain and this P also satisfies φ in M. If C is a class of structures and φ is a selector for ψ in every M ∈ C, we say φ is a selector for φ over C. For a monadic formula φ(X,Y) and ordinals α ≤ ω1 and δ < ω, we decide whether there exists a monadic formula ψ(X,Y) such th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016